Executiongraph
Module for the execution of DAG workflows.
ExecutionGraph
Bases: DAG
, PickleInterface
Datastructure that tracks, executes, and reports on study execution.
The ExecutionGraph is used to manage, monitor, and interact with tasks and the scheduler. This class searches its graph for tasks that are ready to run, marks tasks as complete, and schedules ready tasks.
The Execution class is where functionality for checking task status, logic for managing and automatically directing and manipulating the workflow should go. Essentially, if logic is needed to automatically manipulate the workflow in some fashion or additional monitoring is needed, this class is where that would go.
Source code in maestrowf/datastructures/core/executiongraph.py
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 |
|
description
property
writable
Return the description for the study in the ExecutionGraph instance.
Returns:
Type | Description |
---|---|
A string of the description for the study. |
name
property
writable
Return the name for the study in the ExecutionGraph instance.
Returns:
Type | Description |
---|---|
A string of the name of the study. |
status_subtree
property
Cache the status ordering to improve scaling
__init__(submission_attempts=1, submission_throttle=0, use_tmp=False, dry_run=False)
Initialize a new instance of an ExecutionGraph.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
submission_attempts |
Number of attempted submissions before marking a step as failed. |
1
|
|
submission_throttle |
Maximum number of scheduled in progress submissions. |
0
|
|
use_tmp |
A Boolean value that when set to 'True' designates that ExecutionGraph should use temporary files for output. |
False
|
Source code in maestrowf/datastructures/core/executiongraph.py
add_connection(parent, step)
Add a connection between two steps in the ExecutionGraph.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
parent |
The parent step that is required to execute 'step' |
required | |
step |
The dependent step that relies on parent. |
required |
Source code in maestrowf/datastructures/core/executiongraph.py
add_description(name, description, **kwargs)
Add a study description to the ExecutionGraph instance.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
name |
Name of the study. |
required | |
description |
Description of the study. |
required |
Source code in maestrowf/datastructures/core/executiongraph.py
add_step(name, step, workspace, restart_limit, params=None)
Add a StepRecord to the ExecutionGraph.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
name |
Name of the step to be added. |
required | |
step |
StudyStep instance to be recorded. |
required | |
workspace |
Directory path for the step's working directory. |
required | |
restart_limit |
Upper limit on the number of restart attempts. |
required | |
params |
Iterable of tuples of step parameter names, values |
None
|
Source code in maestrowf/datastructures/core/executiongraph.py
cancel_study()
Cancel the study.
Source code in maestrowf/datastructures/core/executiongraph.py
check_study_status()
Check the status of currently executing steps in the graph.
This method is used to check the status of all currently in progress steps in the ExecutionGraph. Each ExecutionGraph stores the adapter used to generate and execute its scripts.
Source code in maestrowf/datastructures/core/executiongraph.py
cleanup()
execute_ready_steps()
Execute any steps whose dependencies are satisfied.
The 'execute_ready_steps' method is the core of how the ExecutionGraph manages execution. This method does the following:
- Checks the status of existing jobs that are executing and updates the state if changed.
- Finds steps that are initialized and determines what can be run based on satisfied dependencies and executes steps whose dependencies are met.
Returns:
Type | Description |
---|---|
True if the study has completed, False otherwise. |
Source code in maestrowf/datastructures/core/executiongraph.py
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 |
|
generate_scripts()
Generate the scripts for all steps in the ExecutionGraph.
The generate_scripts method scans the ExecutionGraph instance and uses the stored adapter to write executable scripts for either local or scheduled execution. If a restart command is specified, a restart script will be generated for that record.
Source code in maestrowf/datastructures/core/executiongraph.py
log_description()
Log the description of the ExecutionGraph.
Source code in maestrowf/datastructures/core/executiongraph.py
set_adapter(adapter)
Set the adapter used to interface for scheduling tasks.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
adapter |
Adapter name to be used when launching the graph. |
required |
Source code in maestrowf/datastructures/core/executiongraph.py
write_status(path)
Write the status of the DAG to a CSV file.