Core
The core data structures for starting up studies.
This module contains all of the core data structures that are needed for constructing and representing studies and the moving parts that they require. These moving parts include but are not limited to:
- Classes for representing the abstract flow of a study. These objects at their core are the Study and StudyStep classes that are used to construct a DAG for the flow.
- Classes that represent the items in a study's environment such as variables, scripts, and dependencies (paths, git repos, etc.)
- Classes for managing the environment and that know how to apply the environment to an abstract flow.
- A set of classes for managing parameters and generating combinations of parameters in a clean Pythonic way.
Combination
Bases: object
Class representing a combination of parameters.
This class represents a combination of parameters generated by a class of type ParameterGenerator. The only time a user should ever get an instance of a Combination from the ParameterGenerator is when a combination of parameters is VALID.
Source code in maestrowf/datastructures/core/parameters.py
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
|
__init__(token='$')
Initialize an empty Combination class.
A Combination comes packed with the following: - Corresponding values for each parameter in the instance. - A name for each parameter in instance. - Labels for each parameter-value combination in the instance.
The 'token' method parameter defines the character(s) that are expected in front of user parameterized values in strings when an instance of a Combination is applied. For example, assume that we have an instance 'c' of the Combination class that has had the parameter 'PARAM1' added. 'PARAM1' is named 'COMPONENT1' and 'token' is left at its default value of '$'. 'PARAM1' has some arbitrary value that was set. In order to substitute the different variations of 'PARAM1' in a string when the apply method is called, the user would include the following mark up:
- The value of 'PARAM1': '$(PARAM1)'
- The label of 'PARAM1': '$(PARAM1.label)'
- The name of 'PARAM1': '$(PARAM1.name)'
Parameters:
Name | Type | Description | Default |
---|---|---|---|
token |
Token expected to be found in front of a parameter. |
'$'
|
Source code in maestrowf/datastructures/core/parameters.py
__str__()
Generate the string representation of a Combination object.
Returns:
Type | Description |
---|---|
A string representing the combination. |
add(key, name, value, label)
Add a parameter to the Combination object.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
key |
Parameter key that identifies a replacement. |
required | |
name |
Custom name that identifies a parameter. |
required | |
value |
Value of the parameter in this combination. |
required | |
label |
Value of the parameter label for this combination. |
required |
Source code in maestrowf/datastructures/core/parameters.py
apply(item)
Apply the combination to an item.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
item |
String that may contain parameters to be substituted. |
required |
Returns:
Type | Description |
---|---|
String equal to item, except with parameters replaced. |
Source code in maestrowf/datastructures/core/parameters.py
get_param_string(params)
Get the combination string for the specified parameters.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
params |
A set of parameters to be used in the string. |
required |
Returns:
Type | Description |
---|---|
A string containing the labels for the parameters in params. |
Source code in maestrowf/datastructures/core/parameters.py
get_param_values(params)
Get the values for the specified parameters.
:yields: Tuples of param names and values.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
params |
A set of parameters to be used in the string. |
required |
Source code in maestrowf/datastructures/core/parameters.py
ExecutionGraph
Bases: DAG
, PickleInterface
Datastructure that tracks, executes, and reports on study execution.
The ExecutionGraph is used to manage, monitor, and interact with tasks and the scheduler. This class searches its graph for tasks that are ready to run, marks tasks as complete, and schedules ready tasks.
The Execution class is where functionality for checking task status, logic for managing and automatically directing and manipulating the workflow should go. Essentially, if logic is needed to automatically manipulate the workflow in some fashion or additional monitoring is needed, this class is where that would go.
Source code in maestrowf/datastructures/core/executiongraph.py
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 |
|
description
property
writable
Return the description for the study in the ExecutionGraph instance.
Returns:
Type | Description |
---|---|
A string of the description for the study. |
name
property
writable
Return the name for the study in the ExecutionGraph instance.
Returns:
Type | Description |
---|---|
A string of the name of the study. |
status_subtree
property
Cache the status ordering to improve scaling
__init__(submission_attempts=1, submission_throttle=0, use_tmp=False, dry_run=False)
Initialize a new instance of an ExecutionGraph.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
submission_attempts |
Number of attempted submissions before marking a step as failed. |
1
|
|
submission_throttle |
Maximum number of scheduled in progress submissions. |
0
|
|
use_tmp |
A Boolean value that when set to 'True' designates that ExecutionGraph should use temporary files for output. |
False
|
Source code in maestrowf/datastructures/core/executiongraph.py
add_connection(parent, step)
Add a connection between two steps in the ExecutionGraph.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
parent |
The parent step that is required to execute 'step' |
required | |
step |
The dependent step that relies on parent. |
required |
Source code in maestrowf/datastructures/core/executiongraph.py
add_description(name, description, **kwargs)
Add a study description to the ExecutionGraph instance.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
name |
Name of the study. |
required | |
description |
Description of the study. |
required |
Source code in maestrowf/datastructures/core/executiongraph.py
add_step(name, step, workspace, restart_limit, params=None)
Add a StepRecord to the ExecutionGraph.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
name |
Name of the step to be added. |
required | |
step |
StudyStep instance to be recorded. |
required | |
workspace |
Directory path for the step's working directory. |
required | |
restart_limit |
Upper limit on the number of restart attempts. |
required | |
params |
Iterable of tuples of step parameter names, values |
None
|
Source code in maestrowf/datastructures/core/executiongraph.py
cancel_study()
Cancel the study.
Source code in maestrowf/datastructures/core/executiongraph.py
check_study_status()
Check the status of currently executing steps in the graph.
This method is used to check the status of all currently in progress steps in the ExecutionGraph. Each ExecutionGraph stores the adapter used to generate and execute its scripts.
Source code in maestrowf/datastructures/core/executiongraph.py
cleanup()
execute_ready_steps()
Execute any steps whose dependencies are satisfied.
The 'execute_ready_steps' method is the core of how the ExecutionGraph manages execution. This method does the following:
- Checks the status of existing jobs that are executing and updates the state if changed.
- Finds steps that are initialized and determines what can be run based on satisfied dependencies and executes steps whose dependencies are met.
Returns:
Type | Description |
---|---|
True if the study has completed, False otherwise. |
Source code in maestrowf/datastructures/core/executiongraph.py
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 |
|
generate_scripts()
Generate the scripts for all steps in the ExecutionGraph.
The generate_scripts method scans the ExecutionGraph instance and uses the stored adapter to write executable scripts for either local or scheduled execution. If a restart command is specified, a restart script will be generated for that record.
Source code in maestrowf/datastructures/core/executiongraph.py
log_description()
Log the description of the ExecutionGraph.
Source code in maestrowf/datastructures/core/executiongraph.py
set_adapter(adapter)
Set the adapter used to interface for scheduling tasks.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
adapter |
Adapter name to be used when launching the graph. |
required |
Source code in maestrowf/datastructures/core/executiongraph.py
write_status(path)
Write the status of the DAG to a CSV file.
Source code in maestrowf/datastructures/core/executiongraph.py
ParameterGenerator
Class for containing parameters and generating combinations.
The goal of this class is to provide one centralized location for managing and storing parameters. This implementation of the ParameterGenerator, currently, is very basic. It takes lists of parameters and uses those to construct combinations, meaning that if you were to view this as an Excel table, you would have a row for each valid combination you wanted to study.
The other goal is to make it so that by having the ParameterGenerator manage parameters, functionality can be added without affecting how the end user interacts with this class. The ParameterGenerator has an Iterator defined and will generate each combination one by one. The end user should NEVER SEE AN INVALID COMBINATION. Because this class generates the combinations as specified by the parameters added (eventually with types or enforced inheritance), and eventually constraints, it opens up being able to quietly change how this class generates its combinations.
Easily convert studies to other types of studies. Because the API doesn't change from its nice Pythonic style, you can in theory swap out a ParameterGenerator that performs completely differently. All of a sudden, you can get the following for simply deriving from this class:
- Uncertainty Quantification (UQ): Add the ability to statistically sample parameters behind the scenes. Let the ParameterGenerator constraint solve behind the scenes and return the Combination objects it was going to return in the first place. If you can't find a valid sampling, just return nothing and the study won't run.
- Boundary and constraint testing: Like UQ above, hide the solving from the user. Simply add parameters to be constraint solved on behind the API and all the user sees is combinations on the frontend.
Ideally, all parameter generation schemes should boil down as follows:
- Derive from this class, add constraint solving.
- Construct a study how you would otherwise do so, just use the new ParameterGenerator and add parameters.
- Setup, stage, and execute your study.
- Profit.
Source code in maestrowf/datastructures/core/parameters.py
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 |
|
__bool__()
Override for the bool operator.
Returns:
Type | Description |
---|---|
True if the ParameterGenerator instance has values, False otherwise. |
__init__(token='$', ltoken='%%')
Initialize an empty ParameterGenerator object.
The ParameterGenerator is instantiated with two token values, one for parameters and one for labels. The 'token' parameter represents the character(s) expected in front of parameterized strings. For example, if 'token' is left at its default of '$' and we have a parameter named 'COMP1', then the instance of the ParameterGenerator will replace the value '$(COMP1)' in any item passed to the apply method. The 'ltoken' parameter functions in much the same way, except that instead of substituting for a parameter, this character(s) is what is found in a parameter label. The label for the parameter 'COMP1' is specified as '$(COMP.label)' where the label may have a value of 'COMP1.%%' (where %% is the default value of ltoken). For any combination, '%%' will be replaced by the value of the parameter 'COMP1' for that given instance when the label is specified in a item.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
token |
Leading token that denotes a parameter (Default: '$'). |
'$'
|
|
ltoken |
Token that represents where to place a value in a label (Default: '%%'). |
'%%'
|
Source code in maestrowf/datastructures/core/parameters.py
__iter__()
Return the iterator for the ParameterGenerator.
Returns:
Type | Description |
---|---|
Iterator for walking parameter combinations. |
add_parameter(key, values, label=None, name=None)
Add a parameter to the ParameterGenerator.
Currently, all parameters added to a ParameterGenerator instance must have a list of values that are the same length. Future improvements will add the ability to specify either types of parameters or provide different ParameterGenerators derivations that have unique behavior.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
key |
Parameter key to find for replacement. |
required | |
values |
List of values the parameter can take. |
required | |
label |
Label string for labeling the parameter. |
None
|
|
name |
Custom name for identifying parameter. |
None
|
Source code in maestrowf/datastructures/core/parameters.py
get_combinations()
Generate all combinations of parameters.
Returns:
Type | Description |
---|---|
A generator with all combinations of parameters. |
Source code in maestrowf/datastructures/core/parameters.py
get_metadata()
Produce metadata for the parameters in a generator instance.
Returns:
Type | Description |
---|---|
A dictionary containing metadata about the instance. |
Source code in maestrowf/datastructures/core/parameters.py
get_used_parameters(step)
Return the parameters used by a StudyStep.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
step |
A StudyStep instance to be checked. |
required |
Returns:
Type | Description |
---|---|
A set of the parameter names used within the step parameter. |
Source code in maestrowf/datastructures/core/parameters.py
Study
Bases: DAG
, PickleInterface
Collection of high level objects to perform study construction.
The Study class is part of the meat and potatoes of this whole package. A Study object is where the intersection of the major moving parts are collected. These moving parts include:
- ParameterGenerator for getting combinations of user parameters
- StudyEnvironment for managing and applying the environment to studies
- Study flow, which is a DAG of the abstract workflow
The class is responsible for a number of the major key steps in study setup as well. Those responsibilities include (but are not limited to):
- Setting up the workspace where a simulation campaign will be run.
-
Applying the StudyEnvionment to the abstract flow DAG:
- Creating the global workspace for a study.
- Setting up the parameterized workspaces for each combination.
- Acquiring dependencies as specified in the StudyEnvironment.
-
Intelligently constructing the expanded DAG to be able to:
- Recognize when a step executes in a parameterized workspace
- Recognize when a step executes in the global workspace
-
Expanding the abstract flow to the full set of specified parameters.
Future functionality that makes sense to add here:
- Metadata collection. If we're setting things up here, collect the general information. We might even want to venture to say that a set of directives may be useful so that they could be placed into Dependency classes as hooks for dumping that data automatically.
- A way of packaging an instance of the class up into something that is easy to store in the ExecutionDAG class so that an API can be designed in whatever class ends up managing all of this to have machine learning applications pipe messages to spin up new studies using the same environment.
Source code in maestrowf/datastructures/core/study.py
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 |
|
output_path
property
Property method for the OUTPUT_PATH specified for the study.
Returns:
Type | Description |
---|---|
The string path stored in the OUTPUT_PATH variable. |
__init__(name, description, studyenv=None, parameters=None, steps=None, out_path='./')
Study object used to represent the full workflow of a study.
Derived from the DAG data structure. Contains everything that a study requires to be expanded with the appropriate substitutions and with parameters inserted. This data structure should be the instance the future daemon loads in to track progress on a workflow.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
name |
String representing the name of the Study. |
required | |
description |
A text description of what the study does. |
required | |
steps |
A list of StudySteps in proper workflow order. |
None
|
|
studyenv |
A populated StudyEnvironment instance. |
None
|
|
parameters |
A populated Parameters instance. |
None
|
|
outpath |
The path where the output of the study is written. |
required |
Source code in maestrowf/datastructures/core/study.py
add_step(step)
Add a step to a study.
For this helper to be most effective, it recommended to apply steps in the order that they will be encountered. The method attempts to be intelligent and make the intended edge based on the 'depends' entry in a step. When adding steps out of order it's recommended to just use the base class DAG functionality and manually make connections.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
step |
A StudyStep instance to be added to the Study instance. |
required |
Source code in maestrowf/datastructures/core/study.py
configure_study(submission_attempts=1, restart_limit=1, throttle=0, use_tmp=False, hash_ws=False, dry_run=False)
Perform initial configuration of a study. The method is used for going through and actually acquiring each dependency, substituting variables, sources and labels.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
submission_attempts |
Number of attempted submissions before marking a step as failed. :param restart_limit: Upper limit on the number of times a step with a restart command can be resubmitted before it is considered failed. :param throttle: The maximum number of in-progress jobs allowed. [0 denotes no cap]. :param use_tmp: Boolean value specifying if the generated ExecutionGraph dumps its information into a temporary directory. :param dry_run: Boolean value that toggles dry run to just generate study workspaces and scripts without execution or status checking. :returns: True if the Study is successfully setup, False otherwise. |
1
|
Source code in maestrowf/datastructures/core/study.py
load_metadata()
Load metadata for the study.
Source code in maestrowf/datastructures/core/study.py
setup_environment()
Set up the environment by acquiring outside dependencies.
Source code in maestrowf/datastructures/core/study.py
setup_workspace()
Set up the study's main workspace directory.
Source code in maestrowf/datastructures/core/study.py
stage()
Generate the execution graph for a Study.
Staging creates an ExecutionGraph based on the combinations generated by the ParameterGeneration object stored in an instance of a Study. The stage method also sets up individual working directories (or workspaces) for each node in the workflow that requires it.
Returns:
Type | Description |
---|---|
An ExecutionGraph object with the expanded workflow. |
Source code in maestrowf/datastructures/core/study.py
store_metadata()
Store metadata related to the study.
Source code in maestrowf/datastructures/core/study.py
walk_study(src=SOURCE)
Walk the study and create a spanning tree.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
src |
Source node to start the walk. |
SOURCE
|
Returns:
Type | Description |
---|---|
A generator of (parent, node name, node value) tuples. |
Source code in maestrowf/datastructures/core/study.py
StudyEnvironment
StudyEnvironment for managing a study environment.
The StudyEnvironment provides the context where all study steps can find variables, sources, dependencies, etc.
Source code in maestrowf/datastructures/core/studyenvironment.py
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
|
is_set_up
property
Check that the StudyEnvironment is set up.
Returns:
Type | Description |
---|---|
True is the instance is set up, False otherwise. |
__bool__()
Override for the bool operator.
Returns:
Type | Description |
---|---|
True if the StudyEnvironment instance has values, False otherwise. |
__init__()
Initialize an empty StudyEnvironment.
Source code in maestrowf/datastructures/core/studyenvironment.py
acquire_environment()
Acquire any environment items that may be stored remotely.
Source code in maestrowf/datastructures/core/studyenvironment.py
add(item)
Add the item parameter to the StudyEnvironment.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
item |
EnvObject to be added to the environment. |
required |
Source code in maestrowf/datastructures/core/studyenvironment.py
apply_environment(item)
Apply the environment to the specified item.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
item |
String to apply environment to. |
required |
Returns:
Type | Description |
---|---|
String with the environment applied. |
Source code in maestrowf/datastructures/core/studyenvironment.py
find(key)
Find the environment object labeled by the specified key.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
key |
Name of the environment object to find. |
required |
Returns:
Type | Description |
---|---|
The environment object labeled by key, None if key is not found. |
Source code in maestrowf/datastructures/core/studyenvironment.py
remove(key)
Remove the environment object labeled by the specified key.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
key |
Name of the environment object to remove. |
required |
Returns:
Type | Description |
---|---|
The environment object labeled by key. |
Source code in maestrowf/datastructures/core/studyenvironment.py
StudyStep
Class that represents the data and API for a single study step.
This class is primarily a 1:1 mapping of a study step in the YAML spec in terms of data. The StudyStep's class API should capture all functions that a step can be expected to perform, including:
- Applying a combination of parameters to itself.
- Tests for equality and non-equality to check for changes.
- Other -- WIP
Source code in maestrowf/datastructures/core/study.py
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
|
name
property
writable
Get the name to assign to a task for this step.
Returns:
Type | Description |
---|---|
A utf-8 formatted string of the task name. |
real_name
property
Get the real name of the step (ignore nickname).
Returns:
Type | Description |
---|---|
A string of the true name of a StudyStep instance. |
__eq__(other)
Equality operator for the StudyStep class.
: returns: True if other is equal to self, False otherwise.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
other |
Object to compare self to. |
required |
Source code in maestrowf/datastructures/core/study.py
__init__()
Object that represents a single workflow step.
Source code in maestrowf/datastructures/core/study.py
__ne__(other)
Non-equality operator for the StudyStep class.
: returns: True if other is not equal to self, False otherwise.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
other |
Object to compare self to. |
required |
apply_parameters(combo)
Apply a parameter combination to the StudyStep.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
combo |
A Combination instance to be applied to a StudyStep. |
required |
Returns:
Type | Description |
---|---|
A new StudyStep instance with combo applied to its members. |